Chemical modulation of alveolar epithelial permeability.

نویسندگان

  • J T Gatzy
  • M J Stutts
چکیده

The volume and composition of fluid on the surface of the alveoli can affect alveolar ventilation, gas diffusion, and macrophage function. The passive permeability and active processes of the alveolar epithelial lining play a role in regulating surface fluid and are a potential site of damage by airborne chemicals. Like other epithelial barriers, the alveolar lining is permeable to lipophilic substances but restricts the transmural flow of small ions and hydrophilic nonelectrolytes (equivalent pore radius ca. 0.5-1.5 nm). The mammalian fetal lung and alveolar sacs of the adult bullfrog secrete Cl- and K+ into the airspace. Secretion by the fetal lung ceases at birth. Many environmental agents increase the permeability of the capillary endothelium and/or respiratory epithelium and induce pulmonary edema. Studies with bullfrog alveolar sacs have demonstrated that selective effects may or may not be followed by general derangement of the epithelial barrier. Exposure of the luminal surface to HgCl2 (10(-6) to 10(-4) M) induces a selective increase in Cl- secretion that is followed by a fall in transport and a general increase in ion permeation. CdCl2 (10(-5) to 10(-3) M) depresses ciliomotion on cells on the trabecula of the alveolus but does not affect Cl- secretion or transepithelial conductance. HNO3, like other mineral acids, increases conductance and the radii or pores in the barrier, whereas NaNO3 selectively inhibits Cl- secretion. Amphotericin B(10(7) to 10(-5) MJ) induces K+ secretion into the lumen of both bullfrog and rat lung. We conclude that environmental agents induce changes in epithelial function that may compromise the lung's ability to regulate respiratory fluid without destroying the characteristic permeability of the epithelial lining.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of cellular transport characteristics of the human lung alveolar epithelia

Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...

متن کامل

Modulation of cellular transport characteristics of the human lung alveolar epithelia

Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...

متن کامل

Modulation of Ion Conductance and Active Transport by Tgf- 1 in Alveolar Epithelial Cell Monolayers

Transforming growth factor1 (TGF1) may be a critical mediator of lung injury and subsequent remodeling during recovery. We evaluated the effects of TGF1 on the permeability and active ion transport properties of alveolar epithelial cell monolayers. Rat alveolar type II cells plated on polycarbonate filters in defined serum-free medium form confluent monolayers and acquire the phenotypic charact...

متن کامل

Aquaporin 5 regulates cigarette smoke induced emphysema by modulating barrier and immune properties of the epithelium

Chronic obstructive pulmonary disease (COPD) causes significant morbidity and mortality. Cigarette smoke, the most common risk factor for COPD, induces airway and alveolar epithelial barrier permeability and initiates an innate immune response. Changes in abundance of aquaporin 5 (AQP5), a water channel, can affect epithelial permeability and immune response after cigarette smoke exposure. To d...

متن کامل

NK1-receptor activation prevents hydrocarbon-induced lung injury in mice.

Recent evidence suggests that neurokinin (NK)-receptor activation may have a protective role in maintaining lung integrity when challenged by airborne toxicants such as sulfur dioxide, ozone, acrolein, or hydrocarbons. To investigate the effect of NK1-receptor activation on hydrocarbon-induced lung injury, B6.A.D. (Ahr d/Nats) mice received subchronic exposures to JP-8 jet fuel (JP-8). Lung inj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 35  شماره 

صفحات  -

تاریخ انتشار 1980